Infinitely Divisible Limit Processes for the Ewens Sampling Formula

نویسندگان

  • G. J. Babu
  • E. Manstavičius
چکیده

The Ewens sampling formula in population genetics can be viewed as a probability measure on the group of permutations of a finite set of integers. Functional limit theory for processes defined through partial sums of dependent variables with respect to the Ewens sampling formula is developed. Using techniques from probabilistic number theory, it is shown that, under very general conditions, a partial sum process weakly converges in a function space if and only if the corresponding process defined through sums of independent random variables weakly converges. As a consequence of this result, necessary and sufficient conditions for weak convergence to a stable process are established. A counterexample showing that these conditions are not necessary for the one-dimensional convergence is presented. Very few results on the necessity part are known in the literature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probabilistic number theory and random permutations: Functional limit theory

The ideas from Probabilistic Number Theory are useful in the study of measures on partitions of integers. Connection between the Ewens sampling formula in population genetics and the partitions of an integer generated by random permutations will be discussed. Functional limit theory for partial sum processes induced by Ewens sampling formula is reviewed. The results on limit processes with depe...

متن کامل

Markov Processes with Infinitely Divisible Limit Distributions: Some Examples

J.BSTllCT A set of examples is described which suggests that members of a certain class of Markov processes have infinitely divisible limit distributions. A counter example rilles out such a possibility and raises the question of what further restrictions are required to guarantee infinitely divisible limits. Some related examples illustrate the same occurrence of infinitely divisible limit dis...

متن کامل

Functional central limit theorem for heavy tailed stationary infinitely divisible processes generated by conservative flows

We establish a new class of functional central limit theorems for partial sum of certain symmetric stationary infinitely divisible processes with regularly varying Lévy measures. The limit process is a new class of symmetric stable self-similar processes with stationary increments, that coincides, on a part of its parameter space, with a previously described process. The normalizing sequence an...

متن کامل

An exact sampling formula for the Wright-Fisher model and a solution to a conjecture about the finite-island model.

An exact sampling formula for a Wright-Fisher population of fixed size N under the infinitely many neutral alleles model is deduced. This extends the Ewens formula for the configuration of a random sample to the case where the sample is drawn from a population of small size, that is, without the usual large-N and small-mutation-rate assumption. The formula is used to prove a conjecture ascertai...

متن کامل

SPECIAL ISSUE - LIMIT THEOREMS AND TIME SERIES A Cluster Limit Theorem for Infinitely Divisible Point Processes

In this article, we consider a sequence (Nn)n≥1 of point processes, whose points lie in a subset E of R\{0}, and satisfy an asymptotic independence condition. Our main result gives some necessary and sufficient conditions for the convergence in distribution of (Nn)n≥1 to an infinitely divisible point process N . As applications, we discuss the exceedance processes and point processes based on r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002